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and 

with 
f.1= 1.4, r;.1= 0.67 and C.1=0.38 

in the case X, H//< l11>; s is the energy of a hole 
and V the volume of the crystal. The coefficients 
f.1' r;.1 and C.1 are anisotropy parameters which 
depend on the effective mass ratio m.1/m" . 

The temperature dependence of the linewidth 
measured under the compression of 1.8 X lOs kg/ 
cm2 for the cyclotron transition (n=O~l,Mj=-!) 

is shown in Fig. 6 between 1.5 and 4.2°K toge­
ther with the theoretical line. Since soc Tl/2 in ther­
mal equilibrium, one may expect from eq. (4.3) 
l/'r.1 ex:: TB/ 2 as in the case for electrons. One finds, 
however, the linewidth varies approximately line-

arly with temperature at the frequency of 70.1 
GHz, though the temperature dependence be­
comes somewhat less steep in the case of 35.3-
GHz. This result strongly suggests an apprecia­
ble contribution of kH broadening to the line. In 
fact , it is easy to show that the resonance line­
width varies linearly with temperature if we as­
sume the transition to occur between two para­
bolic Landau levels with different curvatures. 

One is now to analyze the linewidth. For the 
valence band problem one has to modify Ito's 
calculation of conductivity18l by taking the JW(kH) 
shift into account . In the case X//< I11> and for 
the transition (n= O~I, Mj=-!), the relevant 
conductivity expression is given by 

co {(E+7J)- 1/2+ 22:;(E - n7J)-1/2}- le-(E+aEl 
a(X )= r dEE- I/2'----- - .. ::....-.-- ------

, r; Jo 1+ 16Y2[r;{E+7J)- 1/2+ 22:;(E-nr;)- 1/2}]-2 
(4.4) 

where 

Y=(X-Jw(kH))T, 

X = w- wo, 

and 

1 2B2+-N2 
9 nwo 

a 
-2-(-A-+-! -N- )- (-A-_----c!- N- ) JE 

with 

In this approximation, we have considered the 
relaxation process only for the Mj=-! ladder 
set without taking the effect of nonparabolicity 
into account. Since kBT,nwc<{ JE, the phonon­
induced transition probability from Mj= -~ to 
Mj= +! or to M j = ± t is considered quite small, 
and higher order terms can also be neglected to 
calculate the JW(kH) shift. The so-called reduced 
linewidth Xh &l! is given by 

X h &lf= X I - X 2= T.lJW (half-width) . (4.5) 

Here Xl and X 2 should satisfy the equation 

a(X. , r;)= +a(Xmax , r;), i = 1 and 2 . (4.6) 

By adjusting the theoretical value of X h & It to be 
equal to the experimental one at 1.5°K (see Fig. 
7), we obtain D2=30 (eV)2, where D2=1.4D~2+ 

0 .67D~D .. +0. 38D~ , . The DZ value obtained 
here is somewhat smaller than that obtained in 
the previous work,19l in which the estimation of 
JW(kH) as well as employed values of the band 
parameters were inadequate. For solving eq. (4.4) 
numerically, the NEAC 2200-500 computer has. 
been used. Figure 8 shows that stress dependence 
of the linewidth at 1.5°K. We have a nice fit 
of experimental data with calculation. D~ is now 
obtainable from eq. (4.3), using the values of D .. , 
and D2. Solution of the quadratic equation yields. 
D~=-5 . 2 or + 3.3 eV. Choice between these 
two roots is a difficulty. It should be made not 
to contradict with experimental results for the 
variation of the energy gap against hydrostatic 
volume change. A little more discussion will be 
made in the next section. 
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Fig. 7. Dependence of the half-width ~~(JJ on D2. 

The solid curve refers to the theoretical calcula­
tion for x, H//( 111) and 35 GHz at 1.5·K. 

§ 5. Discussions 

1) Characters of the quantum lines 
For measuring the width of a quantum line, re­

solution is essential. The condition IWe1-we21> 

£1w (we shall call this the secondary condition) is 
required on top of the ordinary condition for ob­
servability of cyclotron resonance ; i.e., WelT and 
<tJe2T be greater than unity (we may call this the 
primary condition). Here, W.l and W e2 are angular 
frequencies at adjacent peaks, while Llw the line­
width. In our experiments the maximum value 
of IW.l-w.21/£1w is 10. In order to get an optimum 
resolution as well as signal-to-noise ratio, one 
should control the stress very carefully. At 
moderate stress, both IW.l-w.21 and £1w are near­
ly inversely proportional to the stress (see Fig. Sea) 
and Fig. 8). At high stress, dependence of the 
former on stress does not Change, while the latter 
approaches a limiting value. The resolution of 
lines then becomes worse as the stress is increased. 
The fact that we cannot observe the higher 
quantum lines with enough resolution is ex­
plained by the reason that £1w gets larger as the 
quantum number is increased and thereby the 
secondary condition is no longer satisfied. This 
is because the higher energy levels are more 
strongly coupled with the bands M;= ±!. 

The lineshape of a quantum line differs from 
the usual Lorentzian shape. Because of the ' 
Aw(kH) contribution, it has an asymmetric struc­
ture as is characterized by a shoulder on the high 
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Fig. 8. Stress dependence of half-width of the hole 
cyclotron transition (n=O-+l, Mi= -!) under the 
conditions shown . 
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Fig. 9. Theoretical and experimental Iineshapes 
for the transition line (n=O-+l, Mi=-!). 

magnetic field side. One can see this feature in 
eq. (4.4) and Fig. 9. 

In Fig. 3, quantum lines are distinct up to fair­
ly high n values. Though the higher states have 
smaller populations, the oscillator strength which 
is proportional to (n + l) makes up for that. 

2) Inverse mass parameters A, B, N, g-factor (2.\:) 
and shear deformation potential constants D .. 
and D", 

The values of the inverse mass parameters A, 
B, and N as well as those of the shear deforma­
tion potential constants D .. and D,,' can be deter-


